

# NASA, Exploring Sustainability for Life

**Panel Presentation** 

James Leatherwood
Director
NASA Environmental Management
December 2012



#### **Outline**

- Background and Challenges
- Sustainability Principles
- Sustainability Requirements
- Current Scorecard
- Strategic Life Cycle Management





# **Background**

NASA is about inspiring people to seek out answers to questions concerning the universe and our world



#### **U. S. National Space Policy Goals**



- Energize competitive domestic industries
- Expand international cooperation
- Strengthen stability in space
- Increase assurance and resilience of mission-essential functions
- Pursue human and robotic initiatives
- Improve space-based Earth and solar observation



"NASA has a key role in achieving the goals defined in the new policy. We are committed to working with other agencies, industry, and international partners to achieve national goals in exploration - human and robotic - and technology development that will ensure a robust future for the U.S. and our friends around the world." NASA Administrator Charles Bolden,

June 28, 2010



## **Global Challenges**

 Energy supply and Resilience

 Environmental Risks to Mission

- Air Contamination and Green House Gases
- Toxic Material Usage
- Climate Change
- Natural Resource System Degradation
- Health and Welfare
- Water Resource Quality and Availability
- International Security
- Economic Wellbeing





## **Sustainability Principles**

#### **NASA Draft Principles of Sustainability:**

Principle 1: Maximize effectiveness of space systems and supporting assets, supply chain and logistics security, and sustainment of earth support system capability.

**Principle 2: Increase resilience** of earth-based space support systems through terrestrial threat analysis, increased resource efficiency and security, and adaptation and risk mitigation planning and execution.

**Principle 3: Reduce risk to mission** from supply chain, economic, social, ecological factors and other terrestrial factors through lifecycle management of space systems, assets and materials.

Principle 4: Optimize Mission contribution to human health, environmental stewardship and economic and social equity.



## **Sustainability Requirements**

**Executive Order** 13514:

Federal Leadership in Environmental, Energy and Economic Performance





# **Sustainability Scorecard**

| -cor-           | Greenhouse Gases  FOAL: Reduce Scope 1 & 2 GHG emissions by 18.3% by FY 020, from a 2008 baseline; Reduce Scope 3 emissions by 2.6% by 2020 from the 2008 baseline                                                    | 0 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                 | Fleet Petroleum Use<br>OAL: Reduce by 2% annually compared to 2005 baseline                                                                                                                                           | 0 |
| G               | Vater Use<br>iOAL: Reduce potable intensity (gallons/sq ft) by 2% each<br>ear, compared to 2005; reduce use for industrial, landscaping,<br>nd agricultural by 2% each year, compared to 2010                         | 0 |
| 0               | Vaste FOAL: Reduce 50% of trash generated; reduce 50% of construction and demolition debris                                                                                                                           | 0 |
| to hat with the | Preen Buildings  OAL: Starting by 2020, all new planned buildings must be designed by achieve zero-net energy by 2030. By 2015, 15% of existing buildings must meet Gulding Principles for High-Performance Buildings | 0 |
| Chargon G       | Acquisition<br>GOAL: 95% of new products and services are Energy Star or<br>ederal Energy Management Program (FEMP)-designated                                                                                        | 0 |
| G               | Electronic Stewardship  FOAL: Procure energy-efficient equipment; implement best ractices for energy-efficient services and data centers.                                                                             | 0 |



## Sustainability, SLCM, Resiliency

## Sustainability

Aims to maintain the world in balance

## Strategic Life Cycle Management

Promotes sustainability and resilience at all stages of space system life cycle

### Resiliency

Helps systems adapt to shocks in an imbalanced world



### Sustainability and Resilience



Both Sustainability and Resiliency Must Be Managed

Life Cycle Management Ties the Two Together



## **Need for Resilience**





# Strategic Life Cycle Management Purpose

### **SLCM Purpose Summary:**

- Reduce spacecraft weight
- Reduce risk to mission
- Increase space system performance









# Strategic Terrestrial Asset Assurance and Resilience (STAAR)

NASA will use Strategic Life Cycle Management to engineer resilient space systems, promote sustainability, and protect strategic terrestrial space system assets







### **Actions to Achieve STAAR**

Climate Risks:

Resilience

Adaptation

Through

- International cooperation and partnerships
- Promote shared understanding space system materials and processes
- Bring people together; scientist, engineers, academics, students to explore means to achieve results



